AI2013-4

AIRCRAFT SERIOUS INCIDENT INVESTIGATION REPORT

ALL NIPPON AIRWAYS CO., LTD. J A 8 6 7 4

October 25, 2013

The objective of the investigation conducted by the Japan Transport Safety Board in accordance with the Act for Establishment of the Japan Transport Safety Board (and with Annex 13 to the Convention on International Civil Aviation) is to prevent future accidents and incidents. It is not the purpose of the investigation to apportion blame or liability.

Norihiro Goto Chairman, Japan Transport Safety Board

Note:

This report is a translation of the Japanese original investigation report. The text in Japanese shall prevail in the interpretation of the report.

AIRCRAFT SERIOUS INCIDENT INVESTIGATION REPORT

Operator:	ALL NIPPON AIRWAYS CO., LTD.
Туре:	BOEING 767-300
Registration number:	JA8674
Type of serious incident:	ENGINE INTERIOR DAMAGE
Time and date of outbreak:	AT 09:19 , JULY 8, 2011
Occurrence Point:	AT AN ALTITUDE OF APPROX. 8,500M
	ABOUT 79KM TO THE NORTHWEST
	OF TOKYO INTERNATIONAL AIRPORT

September 27, 2013 Adopted by the Japan Transport Safety Board Chairman Norihiro Goto Member Shinsuke Endoh Member Toshiyuki Ishikawa Member Sadao Tamura Member Yuki Shuto Member Keiji Tanaka

10

1. PROCESS AND PROGRESS OF THE INVESTIGATION

On July 8, 2011, the Japan Transport Safety Board designated an investigator-in-charge and two investigators to investigate this serious incident.

An accredited representative of the United States of America, as the State of Design and Manufacture of the aircraft and engine involved in this serious incident, and that of Singapore, as the State of Engine Parts Repair, participated in the investigation.

Comments from parties relevant to the cause of the serious incident were invited. Comments on the draft report were invited from the relevant States.

2. FACTUAL INFORMATION

2.1	History of	On July 8, a Boeing 767-300, registered JA8674, operated by All Nippon	
	the Flight	Airways Co., Ltd. (hereinafter referred to as "the Company") took off from	
		Tokyo International Airport for Toyama Airport as a scheduled Flight 883	
		at 09:08 JST (UTC+9 hours).	
		At 09:19 while flying at an altitude of approximately 8,500m, a loud	
		noise accompanied by vibration was heard from No.1 Engine (the left	
		engine; hereinafter referred to as "the Engine"); therefore, the flight crew	
		they shut it down and returned to Tokyo International Airport. The	
		Aircraft made an uneventful landing at the airport at 09:51 after	
		obtaining a priority in the air traffic control.	

2.2	Injuries to	None
Pers	ersons	
2.3	Damage (1) Extent of Damage: Minor damage (major damage to inside of the engine)	
		(2) Damage to inside of the Engine
		The High Pressure Turbine (hereinafter referred to as "HPT") is
		composed of two stages. Out of 74 second stage HPT blades, the blade 69
		(hereinafter referred to as "the Blade") was separated at a distance of 1.3
		inches (1 inch = about 25.4 mm) from the bottom in the shank and lost.
		Other blades exhibited damage on the blade tips.
		The Low Pressure Turbine (hereinafter referred to as "LPT") is
		composed of five stages. The LPT blades exhibited damage along the full
		axial length of the LPT module.
		\longleftrightarrow
		Fan LPC Compressor Combustion Turbine Chamber
		CC LPT
		Schematic Diagram of the Engine Image of the second stage
		HPT blade
		The meanings of the abbreviations are as follows:
		LPC: Low Pressure Compressor, HPC : High Pressure Compressor
		CC: Combustion Chamber
		HPT: High Pressure Turbine, LPT : Low Pressure Turbine
		inches
		Blade 69 (top view)
0.4	D 1	Blade 69 (side view)
Z.4	Personnel	(1) Pilot in Command Male, Age 52
	mormation	Airmie Transport Fliot Certificate (Airplane) December 14, 2006 Type rating for Booing 767 Nevember 25, 2002
		Class 1 Aviation Medical Contificato Validity Until Sontombor 5 2011
		(2) First Officer Male Age 64
		Airline Transport Pilot Certificate (Airplane) Sontember 15 2000
		Type rating for Boeing 767 May 27 1992
		Class 1 Aviation Medical Certificate Validity : Until September 9, 2011

2.5	Aircraft	(1) Type: Boeing 76	7-300	
	Information	Sei	rial number: 25661; Date of	manufacture: May 19, 1994
		Certificate of ai	rworthiness: No. 99-057	
		Val	idity: During a Period	in which the aircraft is
		ma	intained in accordance	with the Maintenance
		Ma	nagement Manual	
		(2) Engines		
			No.1 Engine	No.2 Engine
		Туре	General Electric	c CF6-80C2B2F
		Serial number	702720	702681
		Date of	May 2, 1992	February 27, 1992
		Total time	55 536 hours and 50	44.633 hours and 23
		in service	minutes	minutes
		Total cycles in service	23,373 cycles	27,411 cycles
2.6	Additional	(1) Measurement of	of the shank wall thicknes	s of the second stage HPT
	Information	Blades		
		The measuremen	t of the shank wall thickne	ess of the second stage HPT
		blades showed that	t the wall thickness of th	he Blade was 0.037 inches
		whereas average th	nickness of other blades w	as 0.08 inches (0.065 to 0.1
		inches).		
		In view of this re	sult, the Company remove	d the blades which have the
		same purchase an	d repair history with the	Blade from the operating
		engines for shank	wall thickness measureme	nt. This resulted in finding
		another blade whi	ch exhibited thin shank	wall thickness (hereinafter
		referred to as "the S	Similar Blade").	
		(2) Detailed Examin	nations of the second stage	HPT Blades
		The engine n	nanufacturer (hereinafter	r referred to as "the
		Manufacturer") con	ducted detailed examination	ons of the second stage HPT
		blades and the Sim	ilar Blade. The results are a	as follows:
		1) Visual examin	nation of the second stage H	IPT blades
		The part mark	ings are cast into the shan	k. It was confirmed that the
		markings on the	Blade and the Similar B	lade were less legible than
		those of other bla	des, indicating that the su	rfaces of the Blade and the
		Similar Blades ha	d been eroded. (See the pict	tures of blades below)
			914	PD 4A
		T		- U
		The Blade	The Similar Blad	e Other blades
		2) Fracture Sur	face Examination of the Bla	ıde

Traces of fatigue propagation were observed on the fracture surface of the Blade.

The shank wall thickness was thinner than the minimum design value of 0.055 inches.

High-temperature corrosion was observed on the internal surface of the fracture part, but it was limited within the outermost aluminide coating and did not penetrate into the base material. The component material analysis of the Blade showed no abnormality.

Fracture surface

3) Three-dimensional measurement and comparison with the reference data

Three-dimensional measurement of the Blade was done to compare

with the reference data. The comparison showed that there were variations in wall thickness in the outer parts of the shank (the parts shown in blue in the diagram in the right) whereas there were no such variations in the interior of the shank.

The diagram of threedimensional measurement

4) The repair history check of the Blade

In April 2008, the Blade was sent to a certificated repair facility^{*1} for overhaul. Grit blasting^{*2} (hereinafter referred to as "Blasting") was performed for cleaning as part of the repair work, but no crack in the shank was reported.

5) The repair history check of the Similar Blade

The repair history of the Similar Blade showed that during the last repair, the Similar Blade and the Blade received the Blasting on the same day.

6) Maintenance manual and a work order document

In the maintenance manual, no minimum wall thickness was specified for the second stage HPT blade shank. In addition, there was nonspecific instruction on a pneumatic pressure for Blasting in the work order document provided by the repair facility, suggesting that possible excessive Blasting occurred depending on the pneumatic pressure used.

The work order document with the non-specific instruction had been used from February 2008 to until it was revised in June 2009.

7) Manufacturing process for the second stage HPT blades

The second stage HPT blades are manufactured by casting. The examination of equipment, jigs used at the time of manufacturing of the Blade and the corresponding production record revealed no abnormality. In addition, no abnormality has been reported regarding the shank wall thickness of the blades manufactured in the same lot as the Blades (except the Similar Blade).

^{*1 &}quot;certificated repair facility" is the facility that had been reviewed and approved about overhaul instructions and procedures for the CF6-80C2 HPT stage 2 blade by the Manufacturer.

*2 "Grit blasting" is a process to remove foreign materials from a metallic surface (of a part) to be coated by blasting the surface with minute grit particles. The usual practice for performing grit blasting is to perform it in accordance with manufacturers' standards because there is no public standard for grit blasting.

3. ANALYSIS

3.1	Involvement	None	
	of Weather		
3.2	Involvement	None	
	of Pilots		
3.3	Involvement	Yes	
	of Aircraft		
3.4	Analysis of	(1) Cause of the Fracture of Blades	
	the	1) Identification of the blade that fractured first	
	Findings	Judging from the fact that the Blade had the least amount of the	
		remaining part and the existence of fatigue propagation cracks, it is	
		highly probable that the Blade was the first one to separate.	
		2) Cause of the Blade Fracture	
		It is probable that as the shank wall was thinner than the minimum	
		design value, fatigue caused by the stress during the engine operation	
		generated cracks and they propagated leading to the fracture of the Blade.	
		(2) Cause of the Thinner Shank Wall	
		With the reasons listed below, it is possible that the thinning of the shank	
		below the minimum design value was caused by excessive Blasting during	
		the repair work at the repair facility:	
	• The non-specific instruction in the work order document lead to		
		excessive Blasting by the worker.	
		• The shank exhibits the sign of being eroded on its surface.	
		\cdot The second stage HPT blades are cast, and no abnormality was	
		reported on the shank thickness for the blades produced in the same	
		lot of the Blade.	
		• The Similar Blade and the Blade received the Blasting on the same	
		day.	

4. PROBABLE CAUSES

It is highly probable that this serious incident was caused by the separation of a second stage HPT blade via fatigue mechanisms during service, followed by the liberated blade fragment in the shank (post-separation) resulted in secondary downstream impact damage for entire axial length of the LTP.

The possible contributing factor to the fatigue propagation was increase in stress because of the reduction in wall thickness caused by excessive grit blasting during the last repair.

5. SAFETY ACTIONS

(1) Safety Actions Taken by the Company

Immediately after this serious incident, the Company decided to perform measurement of the shank wall thicknesses of all the blades when second stage HPT blades are removed from the same type engines.

In addition, during the initial phase of the investigation the Engine Center of the Company, even before the presentation of the Manufacturer's opinion, removed the engines of the same type from the operating aircraft, which incorporated blades purchased around the same time as the Blade and had the same repair history, and measured the wall thickness of the blade. This action resulted in the discovery of the Similar Blade facilitating the finding of the probable cause. (2) Safety Actions Taken by the Manufacturer

The Manufacturer specified the minimum shank wall thickness, measured the shank wall thicknesses of all blades sent to the Manufacturer-designated repair facility for maintenance and continued monitoring the measurements beginning in October 2011.

In December 2011, the Manufacturer individually sent information on the incident to operators that owned blades which might have been subjected to excessive Blasting.

The monitoring found another blade with a thin shank wall. The Manufacturer issued a Service Bulletin dated September 20, 2012, recommending operators to check the blades for serial numbers of the possible problematic blades and to measure the wall thicknesses of all second stage HPT blades.